China Professional FM UL Approved Ductile Iron Grooved Pipe Fitting Rigid Coupling

Product Description

Product DescriptionFire fighting ductile iron grooved coupling and fitting with UL FM CE ISO certification 1.Name:FM UL Approved ductile iron grooved pipe fitting rigid coupling (Rigid coupling, Reducing coupling, Flexible coupling, Mechanical Tee, Mechanical cross, U-Bolt mechanical tee, elbow, cross, tee, flange adapter, split flange,cap

Brand JUNT
Company Type Manufacturer
Standard ANSI,ASTM,DIN,JIS,GB,BS
Materal Ductile Iron (ASTM A536 Grade 65-45-12)
Color Red RAL3000 , Orange , Bule or according to custom requirements
Surface Treatment Paint, Epoxy, Galvanization or Dacroment
Threaded BSPT  NPT
Certification UL FM CE  ISO 9001
Delivery Time  Normally within 15-30days
Pressure 300PSI   500PSI   2.5MPA
Payment Terms T/T  L/C  OR  Other
Useage
 

 

 

1) Automatic sprinkler system for fire production on commercial,civil and municipal constructions like water supplying ,gas supplying , heat supplying , etc
2)Industrial pipeline system on shipping , mine , textile oil field , power plant , etc
3)Pipeline system on subway station , railway station airport , seaport, brided , etc

Our company
HangZhou CHINAMFG Machinery Auxiliaries Co.,Ltd is established in 2004,is a professional manufacturer specialized in the R&D,Pro-duction ,sale and service of ductile iron Grooved Couplings and Pipe Fittings. Our company is a large enterprise group composed of 1 main factory, 3 branch factories which cover-s an area of 68000m2 and has an annual production capacity of more than 50000 tons. We have an experienced team, around 500 skilled staff members, 20 percent of them are engineers and technicians who are professional and hardworking.We are equipped with automation molding line, China 416 automation molding line, Erich automation sand mixing line, CNC lathe, WINTER mold machining center and so on.

We have a very professional laboratory with full serious of testing and inspection as leak testing, raw material receiving inspection, batch chemical composition inspection, microstructure testing, dimension inspection, first article inspection, in-process inspection and final visual inspection in order to ensure the product quality.

 

Packing&Delivery
1)JUNT Large boxes ,non-wood pallets (110L*110W*12H)with PE film,27boxes per pallet at most.
2)JUNT Samal boxes,non-wood pallets(110L*110W*12H)with PE film ,54boxes per pallet at most.
3)We can also pack products as per customer’s requirement.
4) Delivery Details : 5-30 days after order

FAQQ: Are you trading company or manufacturer ?
A: We are factory.Exported abroad directly from our own factories,so the price is competitive.
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock,  it      is according to quantity.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shipp-ment.
If you have another question, pls feel free to contact us as below:
Alisa shi 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

How Does a Rigid Coupling Protect Connected Equipment from Shock Loads and Vibrations?

Rigid couplings play a crucial role in protecting connected equipment from shock loads and vibrations by providing a direct and rigid connection between the shafts. The design and properties of rigid couplings contribute to their ability to mitigate the impact of shock loads and vibrations in the following ways:

High Stiffness: Rigid couplings are constructed from materials with high stiffness, such as steel or aluminum. This high stiffness allows them to resist deformation and bending under load, ensuring that the coupling remains stable and maintains its shape. As a result, the shock loads and vibrations are not amplified or transferred to the connected equipment.

Immediate Torque Transmission: Rigid couplings provide immediate torque transmission between the shafts without any backlash or play. When the connected machinery experiences a sudden shock load, the rigid coupling effectively transfers the torque to the other side of the coupling without delay. This rapid and precise torque transfer prevents the shock load from causing misalignment or damaging the equipment.

Elimination of Damping: Unlike flexible couplings, which can dampen vibrations to some extent, rigid couplings do not have any damping properties. While damping can be beneficial in certain applications, it can also allow vibrations to persist, potentially affecting the performance and reliability of the connected equipment. Rigid couplings do not introduce any additional damping, ensuring that the vibrations are not prolonged.

Stable Connection: Rigid couplings create a stable and unyielding connection between the shafts, limiting any relative movement. This stability prevents the propagation of vibrations from one shaft to another, reducing the potential for resonance and vibration amplification.

Minimal Maintenance: Rigid couplings require minimal maintenance due to their simple and durable design. Unlike flexible couplings that may have wear-prone elements, rigid couplings do not have parts that need regular replacement. This reliability and low maintenance contribute to their ability to provide continuous protection against shock loads and vibrations.

In applications where shock loads and vibrations are prevalent, using a rigid coupling can help protect critical machinery and components from damage and premature failure. By providing a rigid and immediate torque transmission, rigid couplings effectively isolate the connected equipment from the harmful effects of shock loads and vibrations, ensuring smooth operation and enhanced reliability.

rigid coupling

How Does a Rigid Coupling Handle Angular, Parallel, and Axial Misalignment?

Rigid couplings are designed to provide a fixed and rigid connection between two shafts. As such, they do not have any built-in flexibility to accommodate misalignment. Therefore, when using a rigid coupling, it is essential to ensure proper shaft alignment to avoid excessive forces and premature wear on connected equipment.

Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Rigid couplings cannot compensate for angular misalignment, and any angular misalignment should be minimized during installation. Precision alignment techniques, such as laser alignment tools, are often used to achieve accurate angular alignment.

Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the axes of the two shafts are parallel but have a lateral displacement from each other. Rigid couplings cannot accommodate parallel misalignment. Therefore, precise alignment is crucial to prevent binding and excessive forces on the shafts and bearings.

Axial Misalignment: Axial misalignment occurs when the two shafts have an axial (longitudinal) displacement from each other. Rigid couplings cannot address axial misalignment. To prevent thrust loads and additional stresses on bearings, it is essential to align the shafts axially during installation.

In summary, rigid couplings are unforgiving to misalignment and require precise alignment during installation. Any misalignment in a rigid coupling can lead to increased wear, premature failure of components, and reduced overall system efficiency. Therefore, it is crucial to use appropriate alignment techniques and tools to ensure optimal performance and longevity of the connected equipment.

rigid coupling

What is a Rigid Coupling and How Does it Work?

A rigid coupling is a type of mechanical coupling used to connect two shafts together at their ends to transmit torque and rotational motion without any flexibility or misalignment accommodation. Unlike flexible couplings, rigid couplings do not allow for angular, parallel, or axial misalignment between the shafts. The main purpose of a rigid coupling is to provide a strong and solid connection between two shafts, ensuring precise and synchronous power transmission between them.

Structure and Design:

Rigid couplings are typically made from durable materials such as steel, stainless steel, or aluminum, which can withstand high torque and load applications. The coupling consists of two halves, each with a cylindrical bore that fits tightly onto the respective shafts. The two halves are then fastened together using bolts or set screws to ensure a secure and rigid connection.

Working Principle:

The working principle of a rigid coupling is straightforward. When the two shafts are aligned precisely and the coupling is securely fastened, any torque applied to one shaft gets directly transferred to the other shaft. The rigid coupling essentially makes the two shafts act as one continuous shaft, allowing for synchronous rotation without any relative movement or play between them.

Applications:

Rigid couplings are commonly used in applications where precise alignment and torque transmission are essential. Some common applications of rigid couplings include:

  • High-precision machinery and equipment
  • Robotics and automation systems
  • Precision motion control systems
  • Machine tools
  • Shaft-driven pumps and compressors

Advantages:

The key advantages of using rigid couplings include:

  • High Torque Transmission: Rigid couplings can handle high torque and power transmission without any loss due to flexibility.
  • Precision: They provide accurate and synchronous rotation between the shafts, making them suitable for precise applications.
  • Simple Design: Rigid couplings have a simple design with minimal moving parts, making them easy to install and maintain.
  • Cost-Effective: Compared to some other coupling types, rigid couplings are generally more cost-effective.

Limitations:

Despite their advantages, rigid couplings have certain limitations:

  • No Misalignment Compensation: Rigid couplings cannot accommodate any misalignment between the shafts, making precise alignment during installation crucial.
  • Transmits Vibrations: Since rigid couplings do not dampen vibrations, they can transmit vibrations and shocks from one shaft to the other.
  • Stress Concentration: In some applications, rigid couplings can create stress concentration at the ends of the shafts.

In summary, rigid couplings are ideal for applications that require precise alignment and high torque transmission. They offer a robust and straightforward solution for connecting shafts and ensuring synchronous power transmission without any flexibility or misalignment accommodation.

China Professional FM UL Approved Ductile Iron Grooved Pipe Fitting Rigid Coupling  China Professional FM UL Approved Ductile Iron Grooved Pipe Fitting Rigid Coupling
editor by CX 2024-04-17

Recent Posts

Rigid Coupling

As one of rigid coupling manufacturers, suppliers and exporters of mechanical products, We offer rigid coupling and many other products.

Please contact us for details.

Mail: [email protected]

Manufacturer supplier exporter of rigid coupling.